
PART 111. FUXDAMEKTAL THEORY OF SEDIMESTATION 
PROCESSES IX  T H E  ULTRACENTRIFUGE 

1. BASIC E Q U ~ T I ~ ~ S  
The basic equation for describing the sedimentation of a single homogeneous 

solute in the sector-shaped cell under ultracentrifugal force was first presented 
by Lamm (20) as early as 1929. The most general form of this Lamm sedimenta- 
tion equation may be written 
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where c is the solute concentration at time t and position r measured from the 
center of rotation, w is the angular speed of the rotor, and D and s are the diffusion 
and sedimentation coefficients of the solute, respectively. In  deriving equation I 
i t  is assumed that the cell is shaped so that txvo planes defining its radial sides 
intersect on the axis of rotation. This geometry of the cell is necessary to keep 
the solution from convective flow when the rotor is in motion. The mathematical 
theory of sedimentation velocity experiments consists essentially of finding 
solutions to equation 1 under practical initial and boundary conditions, and 
thereby deriving methods which permit reliable evaluation of the sedimentation 
and diffusion coefficients of a given solute in a given solution from relevant ultra- 
centrifugal measurements. Such solutions to equation 1 should form a basis for 
dealing with sedimentation processes in more complex systems involving two 
or more different solute components or a polydispersity with respect to molec- 
ular mass or shape or both. 

In  usual centrifugal experiments with a standard cell, the cell is filled initially 
with a uniform solution of a given concentration (say, co), and either the concen- 
tration distribution or the concentration gradient distribution produced in the 
cell when the rotor is in motion is measured as a function of time, using an appro- 
priate optical technique. Therefore, the initial condition for a sedimentation 
velocity experiment of this type may be represented mathematically as follows : 

C ( T ,  0 )  = co ( r l  < r < rz, t = 0) ( 2 )  

where r1 and r2 are the positions of the meniscus and the bottom of the cell meas- 
ured from the center of rotation, respectively. 

When use is made of a synthetic boundary-forming cell which has recently 
come out as a new technique in ultracentrifugal experiments (ls), initially the 
given solution is separated from the solvent by a sharp boundary formed midway 
between the meniscus and bottom, as is the case with the set-up in ordinary 
free-diffusion experiments on solutions. In this case, the initial condition to  
equation 1 may be represented by 

7s1 
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where ro is the position of the initial sharp boundary formed betm-een solution 
and solvent. 

The boundary conditions to  be given equation 1 are the same for both the 
standard and the synthetic boundary-forming cells. They are obtained from the 
physical requirement that  no solute flow occurs across both the air-liquid menis- 
cus and the bottom of the cell, leading to the equation: 

(4) dC 

dr 
D - - swzrc = 0 (r  = r1 and rZ, t > 0) 

Either combination of the initial and boundary conditions, i.e., equations 2 and 
4 or equations 3 and 4, suffices to determine uniquely a solution to  the Lamm 
equation (equation 1) giving c as a function of time t and position r ,  provided 
that the forms or numerical values of s and D are given. 

11. THE CASE IN WHICH THE EFFECT OF DIFFUSION IS KEGLIGIBLE 
Before proceeding to  discuss the basic solutions to the complete Lamm equa- 

tion, it is convenient to  consider its special case in which D = 0, Le., the case in 
which diffusion is absent. Equation 1 then assumes the form: 

which is a partial differential equation of the first order in c. A simple kinetic 
consideration shows that  substances of large molecular (or particle) size possess 
small diffusion coefficients and large sedimentation coefficients. Accordingly, 
equation 5 is expected to hold better for solutes having larger molecular size; 
strictly speaking, it should be valid only for a hypothetical limiting molecule of 
an infinitely large molecular weight. 

8 .  THE RADIAL DILUTION LAW 

Equation 5 can be integrated readily using the method of characteristics, even 
m-hen s depends on concentration c or r or a combination of both (10). In  this 
case, however, the fulfillment of one of the boundary conditions (equation 4) 
must be abandoned, since equation 5 is of the first order with respect to the space 
coordinate r .  It is physically legitimate in this case to discard the boundary 
condition a t  the bottom of the cell (10). Under this condition the solution of 
equation 5 subject to conditions 3 and 4 is obtained to  give' 

ro < r < r*, t > 0 c ( r ,  t )  = 0 for 
(6) 

c ( r ,  t )  = eo exp(-2w2st) for r* < r ,  t > 0 

Here r* is a function of 2 determined by the relation: 

r* = ro exp(w2st) ('7) 

In  deriving the above solution, i t  has been assumed for simplicity that s does 
not depend on any factors such as solute concentration c and hydrostatic pres- 

Exactly the same solution is obtained with the initial condition 2 for the standard 
cell, in n-hich case TO in all subsequent equations should be replaced by T I .  
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FIG. la .  Concentration distribution in the cell when the effect of diffusion is absent. 
FIG. l b .  Concentration gradient distributions in the cell Then the effect of diffusion is 

absent (solid linej and x-hen either diffusion or a spread in sedimentation coefficient dis- 
tribution is present (dashed linej. 

sure p .  Figures la  and l b  shov the concentration distribution and the concen- 
tration gradient distribution, respectively, calculated from the above solution. 
The concentration distribution forms a step-function, as might be expected from 
the condition that the back-flow of solute due to  diffusion is absent. The discon- 
tinuous point r* nioves towards the cell bottom as time goes on in accordance 
with equation 7 ; it represents an infinitely sharp separation between solution 
and solvent. It should be noted here that,  as the second equation of equation 6 
shows, the concentration in the solution phase decreases exponentially with 
increasing h i e .  This comes out of the geometrical condition that  the cell has a 
sector shape and the field varies with r .  By combining the second of equation 6 
with equation 7 one finds the well-knon-a relationship: 

which indicates that  the product of the concentration in the solution phase and 
the square of the radius to  the solution-solvent separation reniains constant 
during the course of an ultracentrifugal run. This fact is called the "square dilu- 
tion effect" of the sector-shaped cell. It can he shown that this law holds for 
systems in which s depends on c (26), but it no longer does with s which varies 
n i th  pressure (10). Figure l b  shows an infinitely sharp concentration gradient 
curve, corresponding to  the discontinuous step in the concentration distribution 
diagram. Actually, concentration gradient curves observed in practical syqterns 
are more or less spread over a range about the maximum gradient, as shown 
schematically in figure l b  by a dashed line. This is mainly due to  t n o  causes: 
( I )  that  the effect of difhsion is not completely negligible, and ( 2 )  that  actual 
systems often involve a distribution of sedimentation coefficient (and diffusion 
coefficient as \yell), particularly in qystems of macromolecular solutes, either 
naturally occurring or synthetic. Spread in the sedimentation boundary pro- 
duced by the latter cause has been discussed in detail in prior sections of tliib 
article. 

From equation 7 it follons that  
In r* = 111 1.0 $- &st (9) 
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Thus, i t  is required that a plot of In r* vs. t forms a straight line with a slope of 
wzs.  This affords a means of evaluating directly the sedimentation coefficient 
from experiiiieiit. Strictly speaking, this method of evaluation of s could be I d i d  
only in cases where boundary spreading due to diffusion is conipletely negligible, 
but, as has been shown by Goldberg (13), it may be used correctly if the square 
root of the second moment of the gradient curve is chosen as T * ,  even when the 
boundary curve shom a spread due to diffusion. It can be show1 that equation 9 
holds with sufficient accuracy also for systems with s varying with concentra- 
tion, provided that the concentration dependence is not too strong (1). In  this 
case, the slope of the resulting straight line leads to  a value of s corresponding 
to the initial concentration of the solution. Thus, one may determine the concen- 
tration dependence of s from a series of measurements started with different 
initial concentrations. It has been shown recently that this procedure of deter- 
mining s as a function of c may also be applied for systems involving effects of 
diffusion (11). In  this connection it is instructive to note that  this method has 
been frequently used by previous investigators in this field, in the absence of 
reliable theoretical foundation for the validity of its use in practical q -y stems 
where the spreading of the sedimentation pattern due to  diffusion is apparent. 

111. THE APPROXIMATE SOLUTIOX DUE TO Faxfis 

Fax& (9) was the first among those who have given solutions to  the Lamm 
equation, Although his solution is merely an approximate solution derived under 
some restrictions, its remarkable simplicity has provided us, since the early days 
in Uppsals, with a practically unique method for analyzing sedimentation veloc- 
ity data on a great variety of macromolecular systems. 

A close examination (12) of his original analysis reveals that  it is essentially 
based on two assumptions that 

2D/w2sr; << 1 (10) 

2wz st << 1 (11) 

Besides theqe, his analysis assumes both sedimentation and diffusion coefficients 
to  be independent of solute concentration and of any other factors. Assumplion 
10 implies that FaxBn’s solution may be applied only for systems in which D is 
sinal1 enough or s is large enough or there is a combiliation of both. More pre- 
cisely speaking, the contribution from diffusion should be of a practically (not 
completely) negligible order in comparison with that due to ultracentrifugal 
force. Thus it is realized that his solution is essentially that for solutes of lnrge 
enough molecular size. Mathematically. it must be n first-order refinemeiii to 
the solution discuwd in the preceding paragraph, n here D was assumed com- 
pletely zero. Approxiniation 11 suggests that t must be sufficiently small, because 
from condition 10 the product sa2 should not be too small. Thus FnuBn’s du i io i i  
may be useful only for the very early stages of the velocity ultracentrifugatio.1 of 
holutes of sufficiently lnrge molecular size. 

In addition to  the-e re-trictions, F R X ~  replaced the set of auxiliary conditions 
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3 and 4 by the so-called “infinite cell” condition such that 

c(r ,  0) = 
0 ( -  ~0 < r < r o )  

co (rg < r < a) 
It is shown that this replacement is a good enough approximation, so far as the 
above two conditions 10 and 11 are satisfied. It should be noted that  condition 
12 can be derived as a special case for the conditions which obtain in the syn- 
thetic boundary-forming cell. 

Under these restrictions one finds a solution of equation 1 in the form: 
l i Z  c e* €e-‘ - = - [l - @(,c)l + - [ - (1 - e-.)] + higher terms 

G I 2  VCii (13) 

where @(t) is the error integral and other symbols are the dimensionless quanti- 
ties defined by 

T = 2 W 2 S t  

y = (r/roY 

5 = [l - ( y e - T ) 1 / 2 ] / [ ~ ( 1  - e-r)]l/a 

E = 2D/swzri 

I n  terms of these quantities assumptions 10 and 11 are written 

E << 1 and T << 1 (15) 

The second term on the right-hand side of equation 13 is actually of the order of 
 ET)^", so that  i t  may be neglected, together with following higher terms, in 
comparison with the first term, except in the region where [ is sufficiently large. 
Thus one obtains from equation 13 with a satisfactory approximation: 

-7 c e  
- = - [l - @ ( E ) ]  
c o 2  

A number of higher-order terms left undetermined in FaxBn’s original analysis 
have been calculated by Gosting (14) in connection with a study by Williams and 
Baldnin (6, 30, 31) on the boundary spreading due to molecular heterogeneity. 
It should be remarked, however, that  FaxBn’s solution is originally based on the 
two fundamental assumptions, E << 1 and T << 1, so that contributions from such 
higher terms are practically negligible. 

From equation 16 one obtains an  approximate equation for the concentration 
gradient distribution in the form: 

Since the third equation in equation 14 may be rewritten 
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r=rx - r 
E- t =o  

FIG, 2. Concentration gradient curve predicted from Faxen’s solution v i th  both s and 
D independent of concentration; the sedimentation is from left to  right. The boundary 
pattern forms a Gaussian curve. 

i t  is expected from equation 17 that  measured sedimentation boundaries, ac/ar, 
should form a Gaussian curve (figure 2) when the coordinate origin of space 
variable r is displaced t o  a point r* satisfying the relation: 

It is convenient to  refer to r as the physical cell coordinate and to  g as the reduced 
cell coordinate. Equation 19 indicates that the origin of the reduced cell coor- 
dinate, r*, moves with the “reduced” time T in accordance with a relation: 

In r* = In TO + T/2 

or 

In r* = In rg + d s t  

Hence a plot of In T* against time t results in a straight line, and one can evaluate 
the required sedimentation coefficient from its slope. It is important to note that 
equation 21 is identical in form ni th  equation 9, which was derived by assuming 
D to be zero. This implies that ,  so far as the basic assumptions involved in 
FaxBn’s solution are fulfilled, the displacement rate of the maximum position of 
a sedimentation boundary curve is solely determined by the value of s, irrespec- 
tive of the value of the diffusion coefficient.2 

Let us denote by A the area that a given sedimentation boundary encloses 
above the base line. It readily follows from equation 16 by letting E + - that 

(21) 

A = coexp(-7) (22) 
Since, as is immediately understood from equations 18 and 19, E > 0 corresponds 
to r < r*-namely, the solvent side-and E < 0 does to the solution side, the 

2 It is readily shoRm that the maximum of a sedimentation boundary curve given by 
Faxen’s solution accords n-ith the origin of the reduced cell coordinate if the contribu- 
tions in equation 13 arising from the second- and higher-order terms are neglected. 
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quantity A represents physically the solute concentration a t  a place sufficiently 
far in front of the boundary between solvent and solution. The maximum height, 
H ,  of the boundary curve given by equation 17 is obtained by putting in it 
5 = 0, giving 

H = (co/ro) e - (3 /2 ) r  [ne ( I  - e-r)]-1/2 (23 )  

The “height-area ratio,” H / A ,  is then obtained by combining equations 22 and 
23 to give 

which may also be written 

The quantity ( A / H ) 2  may be determined from observed sedimentation bound- 
aries as a function of time, while s may be evaluated using the procedure de- 
scribed above from the same source of experimental data. Thus may be 
plotted against ( 2 n / s w 2 )  (ezwzst  - 1) over a range of time in which 2 d s t  is suffi- 
ciently small compared with unity to warrant FaxBn’s solution, and one obtains a 
straight line with a slope equal to the required diffusion coefficient. Since FaxBn’s 
solution assumes 2w2st to be sufficiently small, equation 25 may be expanded 
to give approximately 

= 4aDt (26) 

which indicates a plot of (A,”)2 vs. 4at to yield a straight line with a slope D .  
This method of evaluation of D requires no s value in advance, and appears to be 
convenient for practical purposes. However, it is recommended that use be made 
of a more complete method based on equation 25 for accurate evaluation of D. 

As noted in the foregoing lines, FaxBn’s solution assumes the initial condition 
of the form of equation 12 which may substantially be suited to the synthetic 
boundary-forming cell. Therefore, strictly speaking, no information can be de- 
rived from it about the sedimentation process which obtains in the standard cell. 
Experiments on many macromolecular systems demonstrate that even in the 
standard cell a plot of In T* vs. t follows quite accurately a straight line when the 
peak of the concentration gradient curve separates from the meniscus. However, 
it  is observed in this case that the straight line cuts through the horizontal line 
defined by In r* = In r1 with a finite intercept A t ,  as schematically shown in 
figure 3. Comparison with equation 21 suggests that in the standard cell the 
position of the meniscus r1 can no longer be regarded as a free boundary a t  t = 0. 
Severtheless, the linearity of In T *  vs. t observed for t > At is generally so re- 
markably good that it is customary to assume observed sedimentation bounda- 
ries in a standard cell as if they were originated from as hypothetical sharp free 
boundary formed at the meniscus a t  a time t = At. If this assumption holds, one 
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may modify equation 21 to  give 

In r* = In T I  + &s(t - At) ( t  > At) ( 2 7 )  
Correspondingly, equations 25 and 26 must be modified such that 

The value of At may be determined by linear extrapolation of the observed 
In r* vs. t plot, as illustrated in figure 3;  it is frequently referred to as the “zero- 
time correction.” Exact evaluation of At is immaterial for the determination of 
s, because only the slope of In r,: against t is important. Such is not the case, 
however, for the evaluation of D by means of equation 28, especially when the 
maximum position of the sedimentation boundary curve moves rapidly tows-ards 
the bottom of the cell; in such a case the value of s is necessarily so large that  the 
interval of time in which Faxdn’s solution may hold is considerably shortened. 

It is of considerable interest to  investigate theoretically how closely this empiri- 
cal modification of Faxdn’s original solution is applicable to data of sedimenta- 
tion velocity experiments from the standard cell. To this e3d solution must be 
obtained to the Lamm equation subject to conditions 2 and 4. If, as in the original 
analysis of Fax&, interest is confined only to  the sedimentation behavior a t  yery 
early stages of ultracentrifugation, the second condition in equation 4, i.e., the 
condition at the cell bottom, niay be replaced, to  a good approximation, by 

c ( r ,  t )  = finite ( r  = r? = = ,  t > 0 )  (30) 
The set of auxiliary conditions thus obtained may be referred to  as the “semi- 
infinite cell” condition. MacCosham and Fujita (21) worked out a solution to  
equation 1 under this set of conditions and confirmed that the empirical proce- 

- t  
FIG. 3 .  A In r* vs. t curve with a zero-time correction Af; r i  is the radius to  the cell 

meniscus from the center of rotation. 
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dure mentioned above holds fairly accurately for systems having s large enough or 
D small enough or both, i.e., 2D 'SW*T;  sufficiently small compared with 
The theoretical expression for the zero-time correction At has been obtained in 
terms of s, D ,  and other related parameters. According to  their solution, the 
zero-time correction originates from the situation that diffusion of the dissolved 
solute in the vicinity of the meniscus differs from that in an unlimited medium 
(free diffusion). Actually, this is not the only factor for the zero-time correction. 
One of the possible factors may be that some finite time (5-15 min.) is required 
in currently used ultracentrifuges before the rotor attains full speed. This factor 
should become important in systems where solutes sediment very rapidly. 30 
mathematical solution is yet available to the Lanim equation in which this effect 
is taken into account. 

IV. A SOLUTION OF THE Faxgs TYPE IT WHICH s DEPENDS ox c 

In  FaxBn's original solution both sedimentation and diffusion coefficients 
were assumed to  be independent of solute concentration. At present i t  is a well- 
recognized experimental fact that sedimentation coefficients of macromolecular 
systems generally vary with concentration. Thus it has frequently been reported 
that s for many linear high-molecular-n eight substances in dilute solution follows 
a concentration dependence of the type: 

s = so/(l + kc)  (31) 
where SO is the value of s a t  infinite dilution, and k is, in almost all cases investi- 
gated, a positive quantity characteristic of a given polymer-solvent pair. Wales 
and Van Holde ( 2 7 )  demonstrated that k for solutions of linear high polymers 
having flexible chains is closely related to  their intrinsic viscosities. To test 
equation 31 it is customary to  plot 1,'s against c and observe its linearity. The 
dependence of s on concentration in dilute protein solutions is known to obey 
better a linear equation 

( 3 2 )  s = so(1 - k c )  
rather than equation 31. The form of equation 32 may be considered as a special 
case of equation 31 for kc  sufficiently miall compared with unity, but no ouch 
restriction on bc is necessary when one treats equation 32 as an empirical relation. 

From the kinetic theoretical point of vievi, T i  hen s depends on c,  the diffusion 
coefficient D should in general depend on c owing to  the contribution of the fric- 
tional coefficient to  these quantities. Roughly &peaking, there i5 a general trend 
for the variation of D with c in dilute solutions that D increases monotonically 
with c for substaiices of -uffcientlv high iiiolecular weight and decre1-x mono- 
tonically for substances of relatively midl  molecular size. 

3 The dimensionless parameter 2D/sw2ri  iq an equivalent t o  

e = 2D/sw2ri 

which plays a fundamental role in the analysis of sedimentation data from the synthetic 
boundary-forming cell. Othernise stated, the same symbol e mill be used for both 2D/swZry  
and 2D/sw2r ;  in the discussion which follows. 
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Since both s and D generally vary with c, particularly in systems of proteins 
and of other high-molecular-weight substances, it  is not sufficient to analyze 
sedimentation velocity data for such systems in terms of the classical F a x h  
solution which neglects these effects. However, one finds readily that  it is formid- 
ably difficult to solve the complete Lamm equation by taking explicitly into 
account a concentration dependence of either s or D or both, because of the non- 
linearity of the equation which manifests itself in such cases. Quite recently, a 
first solution to this problem has been obtained for the case in which s is allowed 
to vary linearly with c in accordance LT-ith equation 32,  while D is left independent 
of c (11). The two basic assumptions as well as the infinite cell condition as had 
originally been introduced in FaxBn’s analysis were also adopted in the solution, 
so that  it is only useful for practical purposes under such restrictions that the 
classical Faxen solution may also apply. The general solution obtained is so 
complicated in form that only its essential features which tell the effects of a 
concentration dependence of s on sedimentation behavior are outlined below. 

Figure 4 s h o w  graphically the concentration gradient curves for different 
values of kcO, where co is the initial concentration of the solution. In  this figure, 
the curve corresponding to kco = 0 represents the boundary curve for s inde- 
pendent of c, i.e., that derived from the classical solution described fully in a 

- r/ib 
1.1 

I I I I 
- 1.0509 1.5733 1.0956 1.iiao 1.1454 i 

4- 
FIG. 4.  Effects of concentration dependence of the sedimentation coefficient s upon 

the concentration gradient curve. s varies with c in accordance with the equation: :; = 
s0(1 - kc). co is the initial concentration of the  solution, and e ,  is the concentration far 
in front of the boundary between solvent and solution phases. 
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previous paragraph. It is found that,  n i th  incieawig dependence of s O:I concen- 
tration (1 )  the shape of the boundary curve is markedly sharpened, ( 2 )  the posi- 
tion of the maximum gradient is uoticeably chifted towards the positive side of 
t ,  Le., the solvent side, but ( 3 )  symmetry of the cur\ e it. practically maintained 
except a t  the edges. The-e facts are in harmony ui th  xha t  one n x y  observe in 
actual systenik involving a concentration dependence of s ;  thus it appears that  
the result (1 )  iq 110 more thaii the behzTlor nliich ia uwally called n b'4m=pening 
effect." 

The position T* of the maximum giadient of a -ediinentation boundary curve 
is shovn in this case to be displaced ni th  time t iii nccmdance with 

In r r  = In ro + so(l - i x o ) w ? t  + ( I  - kca~kco(sow't)' + O[(saw2t131 ( 3 3 )  

sow?t having been assumed to  be sufficiently m a i l  in comparison T\ ith unity, 
the third and higher t e r m  in this expansion may be dropped to  obtain: 

In r* = In T O  + so(l - iicC)c,'*t (3.4) 

This is exactly of the same form as equation 21, except for the difference that s 
in equation 21 is here replaced by so( 1 - k c 0 )  ; this is actually the value of the 
sedimentation coefficient for the given initial concentration co. Thus one may 
evaluate s for a given concentration from the displacement of the maxixun? 
gradient in exactly the same manner as described previously for the case in  

which s is independent of concentration. By plotting s thus obtained against the 
corresponding coiicentration and extrapolating back to infinite dilution, the 
value of so may be determined, together n i th  the slope constant k ,  if the given 
system obeys equation 32.  Thii  is the procedure nhich has customarily been 
employed for the determination of s as a function of concentration. It is apparent 
that further theoretical investigation must be attempted to  confirni whether this 
usual procedure is reliably used for other types of concentration dependence of s ,  
particularly for the type given by equation 31 , which has a much n-ider applica- 
bility than equation 32. 

It is shocn that the ratio of height to area, 11 '-1, for the system obeying equn- 
tion 32 can be represented with a sufficient degree of accuracy by 

( 3  5 )  

where 

and @'(.c) is the derivative of the ermr integral u-ith respect to  its argument. By 
combining this equation v:ith the value of sn c.!jtnined, one niay evaluate the 
diffusion coefficient D from d a ? ~  of H ,i aq a function of t ;  a detailed account of 
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the procedure can be found in a recent article by Baldwin (T), where a practical 
application of i t  to data on bovine plaema albumin in dilute solutions iq stlso 
described. His arialysiq discloses that  D values which are evaluated from sedi- 
mentation velocity niea>urements in terms of data on height-area iatio are ex- 
tremely sensitive to a slight dependence of s upon concentration. Thus, when his 
data on bovine albumin are aiialyzed in terms of the classical F a x h  solution 
neglecting the concentration dependence of s, one obtains a peculiar value of D 
which changes appreciably TI ith the duration of ultracentrifugation, while, when 
use is made of the more appropriate equation 35 for the analysis, one finds :L D 
value which is not only free of such an anomaly but which agrees quite well ni th  
the value previously reported by Gosting (15) from precision free-diffusion 
experiments on the same sample. 

In  the solution for a concentration-dependent sedimentation described above, 
the dependence of D on concentration was ignored although, as noted before, 
both s and D may concomitantly depend on concentration, This neglect, how- 
ever, is justified so far as the Lamm equation, subject to  the conditions of the 
Faxen type, is concerned. In fact, any solutions of the Faxen type assume that  

e = 2D/s0o2r02 << 1 
so that  concentration dependence in D, if any, should play a far less important 
role in the determinstion of sedimentation pattern than does that in s. 

V. THE EXACT SOLUTIOX OF ARCHIBALD 
The first exact solution t o  the Lamm equation free of the basic assumptions 

employed in solutions of the F a x h  type was obtained by Archibald ( 2 ) ,  assuming 
both s and D independent of concentration, under the initial and boundary condi- 
tions obtained in the standard cell, i.e., equations 2 and 4. The concentration 
distribution in the cell is represented by an infinite series as 

C ( T ,  t ) / co  = ez(zz - zl)/(ezz - ezl) 

+ 2 ~ ( a , ,  1, z)e(on-l)' [: e-ZM(a,,, 1, z )  d~ / lr e-'[M(an, 1, z ) ] ~  dz (38) 
n-1 

where 

T = 2 w2st ,  z = w2sr2/2D, z ,  = w2sri/2D (i = 1, 2 )  (39)4 

The function M(a, ,  1, z )  is an eigenfunction associated with a confluent hyper- 
geometric equation as 

and a,  is the associated eigenvalue determined from the relation: 

(z  = 21 and 22) (4 1) 
d 
dz - M(CYn, 1 , z )  = M(a,,  1 , z )  

4 It should be noted that  z1 is the reciprocal of e appearing in solutions of the F a x h  
type. 
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The evaluation of CY, involves a really laborious computational effort, even if 
interest is confined only to the first several of them. Thus, Archibald ( 2 )  had to 
satisfy himself with determining only the value for n = 1. Values for n = 1, 
2, and 3 have quite recently been computed by Waugh and Tphantis (28) using 
a differential analyzer a t  the Massachusetts Institute of Technology. It should 
be noted, however, that  these eigenvalues depend on the choice of z1 and zz. 
Accordingly, the values obtained by these authors for particular sets of the 
values of z1 and zz (hence, of s, D ,  w, T I ,  and ~ 2 )  may not be utilized for general 
purposes. An approximate analytic expression of an in terms of the parameters 
related was derived later by Archibald ( 3 ) ,  together with an  approximate equa- 
tion for the concentration distribution which is more tractable for practical com- 
putations. This will be discussed in the next paragraph in connection with more 
recent developments in the approximate treatment of the sedimentation diff eren- 
tial equation. 

A close examination of the solution of the Archibald type reveals that  the 
series in equation 38 converges rapidly under the condition that 

7 = 2 w2st & O(1)  

E = 2D/swzr; 2 0(1) 

(42) 

(43) 

and 

These are characteristically contrasted to inequalities 10 and 11 upon which 
FaxBn’s solution was based. Thus one finds that Archibald’s solution may be 
well suited to the description of sedimentation processes of relatively small mole- 
cules a t  later stages of ultracentrifugation. Of course, this is largely a qualitative 
statement of the basic character of the solution, and the actual estimate of the 
ranges of T and E in which the series in equation 38 is practically useful depends 
on a particular combination of the parameters s ,  D, w ,  and r1. 

Although the above solution is of considerable interest from the mathematical 
point of view in that it represents an exact solution to the Lamm equation, it is 
too complicated to be useful for the practical analysis of experimental data. 
Archibald (4) has demonstrated methods for the evaluation of s and D from 
appropriate experiments in terms of this exact solution. Unfortunately, they 
require the greatest precision in the data that are most difficult to obtain (29). 
In  general, the difficulty of finding means to determine s and D for substances 
of small molecular size from measurements of sedimentation velocity lies in the 
fact that in such systems, either the maximum of the concentration gradient 
curye remains sufficiently close to the meniscus or, even when the boundary is 
separated therefrom, it is not sufficiently sharp to be accessible to an accurate 
determination. Some theoretical sedimentation gradient curve3 illustrative of 
this situation are shown graphically in figure 5 ,  where the numerical values of 
the parameters used in the calculation are given in the legend. These mrves have 
been computed using not the exact &kchibald solution hut an approximate solu- 
tion which will be described below. It is observed from the figure that a t  the rela- 
tively initial stages of ultracentrifugation there appears a maximum, though quite 

5 The inequality means that neither quantity is very small in comparison to  unity. 
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FIQ. 5.  Calculated concentration gradient curves in a cell with T I  = 6.067 cm. and rz = 
7.003 cm. The curves correspond t o  different values of reduced time T = 2u2st. The follow- 
ing values are used for the calculation: d = 3.919 X lo7 (rad./sec.)*, s = 0.565 X W 1 3  

sec., D = 2.372 X 10-6 cm.*/sec. 

diffuse, close to the meniscus, but with increasing time the boundary becomes 
appreciably flattened and eventually disappears completely. It is also important 
to  note that the gradient curves indicated do not return back to the baseline 
ahead of their maxima. It is shown that  for a system which has a much higher e 

than chosen for this computation, the calculated boundary curves exhibit 
eventually neither a maximum nor a zero gradient over the entire cell. These 
sedimentation patterns make a marked contrast to those for systems belonging 
to the category of Faxhn’s solution; in the latter, particularly when the initial 
boundary between solution and solvent is formed away from the meniscus, there 
is observed a sedimentation boundary which has a definite “bell” shape and 
approaches zero-gradient a t  both of its edges, as illustrated in figure 2 .  The 
marked upturn of the gradient curves in figure 5 as observed in the centrifugal 
side of the cell is accounted for by restricted diffusion of solutes affected by the 
cell bottom.6 Calculations in terms of an approximate solution to the Lamm 

4 In  addition to  the upturn of the gradient in the vicinity of the cell base, a sharp up- 
turn of gradient may be observed in the region adjacent to the meniscus a t  very 
early stages of ultracentrifugation. This may be ascribed to  a similar restricted diffusion 
in the region, as understood from the calculation of MacCosham and Fujita (21). 



798 WILLIIMS, VBN HOLDE, B.4.LDWIX1 .4ND FUJITA 

4 i x P Y 
t t 

-r r; 
-r 
FIG. 6 FIG. 7 

FIG. 6. Schematic diagram of the change in concentration gradient distribution with 
bhe duration of ultracentrifugation for a system with a sufficiently small value of E ;  the 
numbers 1 , 2 ,  3, and 4 are in order of the time elapsed from the start  of centrifugation. 

FIG. 7. Schematic diagram of the change in concentration gradient distribution n i th  
the duration of ultracentrifugation for a system n i t h  a relatively large value of e ;  the 
numbers 1, 2, 3, and 4 are in order of the time elapsed from the start  of centrifugation. 

equation which will be described below show that for systems having >mall 
enough values of E this upturn is confined in a sufficiently narrow layer adjacent 
t o  the cell base over a considerably long interval of tinie from the start of ultra- 
centrifugation, while for systems having relatively large E the corresponding 
region covers a coiisiderahly extended area in the cell, except for very early 
stages of sedimentation. Summari7ing the results from these and related con- 
siderations, one can describe for the progressive change of sedimentation bound- 
ary pattern with the duration of ultracentrifugation two such schematic diagrams 
as shown in figures G and 7 ;  figure 6 presents the patterns for a system belonging 
to “Fax& category,” and figure 7 shows those for a s p t e m  belonging to “Archi- 
bald category.” These t T \  o patterno represent, rather ideally, two extremes of 
the type of solutions to the 1,anini equation as classified in terms of the baiic 
parameter of the problem: E = X,’SW?T?. There may he a variety of hubstances 
which belong to  the range of 

,4s observed from figure 6, the d imen ta t ion  pattern of the F a x h  type is 
characterized not only by the appearance of n distinct maxiniuni gradient but 
also by the existence of a zero-gradient region ahead of the niaxinium. This latter 
condition means that there is a region centrifugal to  the maximum gradient T\ here 
concentration is independent of position. This region is often called the “plateau 
region” (in the concentration distribution diagram). On the basis of a consiciera- 
tion of the conservation of mass, Baldn-in ( 5 )  has shown that under thic. condition 
there obtains the relation: 

intermediate betiveen these two extremes. 

where y 1  deiiotes a position chosen arbitrarily in the plateau region, i.e., in the 
zero-gradient region in the concentration gradient diagram. This equation can 
be used directly and simply for the calculation of s, when the concentraticjii 
gr.ac1ic.n: cwve between the meniscus and the point r t  is measured as a function 
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of time. This method has an advaiitage over the ciassical one which resorts to the 
movement of the ma-&nuni gradient, in that  i t  may apply for the case when a 
di;.tinct ninximuin does not separate from the meniscus n-ithin the interval of 
time accessible to  experiment. From the consideration. given above, it is ex- 
pected that the boundary remaii1.j qufficiently close to  the meniscus over period 
of ultracentrifugation n-lien a hubstance has n iafficieiitly small s so as not to  
satisfy the condition 2Dls~~7-q << 1, one of the basic assumptions for the solutions 
of the FaxBn type. As a matter of fact, this prediction can be confirmed from the 
calculation of NacCosham and Fujita (21) cited previously. However, there is 
some doubt whether the method of B a l d ~ ~ i n  can be applied reliably for substances 
having extremely small s or large enough D .  In  such a case, the param- 
eter 2D/sw2r: may necessarily be so large that the iedimentatioii pattern would 
be of the type predicted by a solution of the Xrchibald type and, therefore, no 
such well-defined zero-gradient region is observed away from the meniscus as 
required in the derivation of equation 44 (see figures 5 and 7). Thus i t  appears 
e-entia1 in a practical application of equation 44 to  svertain in advance if the 
chomi position T~ lies in a true plateau region. This can be done by use of a double 
cell in which the solvent is placed on one side and the solution on the other; the 
two xhlieren curves coincide in the zero-gradient or plateau region. Klainer and 
Iiegeles (19) have recently combined thiq method with one of J4rchibald's 
previous procedures (4) to  determine simultaneously the diffusion coefficient D 
a i d  the molecular weight of solute M ,  and have applied it t o  some practical sys- 
tems with favorable results. 

The method of Baldmin is essentially equivalent to  that of Gutfreund and 
Ogston (16), who expressed the conservation of mass on the basis of concentra- 
tion distribution in the form: 

(45) 

If, in accordance with 1-phantis and Waugh (32), one introduces Q( t ) ,  the aver- 
age fractional supernatant concentration at  time t ,  by 

Q( t )  = Ir' cr dr /  I:' cor dr 
r i  

equation 45 can be rewitten 

(46) 

This equation can also be used to  determine s when the concentration distribu- 
tion between the meniscus and the plateau region is measured as a function of 
time. I t  is, hoTyever, inconvenient for use with the optical systems now generally 
employed-for example, the Lamm scale method, the Philpot schlieren system, 
and their variants-because sedimentation patterns measured in these systems 
are not the concentration distribution but the concentration (refractive index) 
gradient distribution. It would be u-ell suited to  the light-absorption or the 
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integral-fringe interferometric systems, where boundary curves are given in the 
form of concentration against cell distance. 

As noted above, either Baldwin’s method or that of Gutfreund and Ogston 
assumes the existence of a plateau region ahead of the boundary or the meniscus, 
so that both are essentially best suited to high-molecular-weight solutes which 
are generally characterized by sufficiently small values of E .  For solutes of lorn 
enough molecular weight the plateau region may not always be obtained defi- 
nitely, and another method must be sought. An interesting contribution to  this 
problem has recently been given by Yphantis and Waugh (32), mho based their 
treatment on the exact solution of Lamm’s equation developed by Archibald. 

Instead of defining rt as a position chosen in the plateau region, they choose it 
rather arbitrarily somewhere in the central region of the cell, and consider the 
average fractional concentration, Q(t), in the phase centripetal to this point. 
They calculated Q ( t )  as a function of reduced time T = 2 d s t  for several values 
of a new parameter u defined by u = w2s/D, using the exact solution of Archibald 
described above.’ The results they obtained are shown in figure 8. It should be 
noted that this graph depends moreover on the particular values of r1, 7-2, and 
f t  chosen (in their case, these are 6.067, 7.003, and 6.600 cm., respectively). Be- 
yond the initial, coincident phase of the plots shown in figure 8, each Q is related 
to an infinite number of paired values of T and u. If two (or more) values of Q 
are obtained for different times, such that a t  least one is beyond the initial stage 
mentioned, then i t  should be possible to  determine what particular values of s 
and D give the observed values of Q. A useful procedure for effecting this deter- 
mination has been developed by Yphantis and Waugh themselves (32). They 
(33) applied it to some biologically important substances with results which 
compared very favorably with the values from the classical displacements of the 
boundary gradient curves. During the initial stage of centrifugation (T << l)Q(t) 
is essentially independent of u, hence of D, except for extremely low values of u. 
Therefore, an experimental Q determined in this region leads directly to a value 
of s. It is a simple matter to &how that the curve of 1 - Q for u = s , i.e., D = 

0, can be represented by equation 47. Accordingly, the initial, coincident phase 
of Q vs. T plots is the time interval of ultracentrifugation where the method of 
Gutfreund and Ogston (and hence the method of Baldwin) can be applied safely 
to evaluate s, irrespective of the value of D.s For instance, it  follows from figure 8 
that  for a system with u corresponding to curve 1 the range of applicability of 
the method of Gutfreund and Ogston is confined to T smaller than about 0.03. 

In  the general method of Tphantis and Waugh described, the position of r t  can 
be chosen arbitrarily somewhere in the central part of the cell. In  order to make 

7 u is related with e by a relation, u = 2/er:. Thus, larger u corresponds to  smaller e for 
a fixed value of rl. It should be noted that u is not a dimensionless quantity but has a di- 
mension of (length) .-z 

8 For large u (hence small D) Q vs. 7 curves do not differ significantly from that for u = 
m (D = 0) over a considerable interval of time from the start of centrifuga- 
tion. This causes difficulty in determining D by Yphantis and Waugh’s method, because 
their method is practically equivalent under this condition to  the method of Gutfreund 
and Ogston, which tells nothing of D. 
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FIG. 8. The average fractional supernatant concentration Q vs. reduced time T (= 2w2s l )  
curves for various values of parameter u (= wZs/D),  calculated from exact solutions. For 
curve 1, u = 0.467; for curve 2, u = 0.933; for curve 3, u = 1.399; and for curve 4, u = oc 
( D  = 0 ) .  

possible measurements of Q ( t )  after the rotor has been brought to rest, they 
devised a separation cell, as they termed it, by slight modifications of the com- 
mercially available standard Ultracentrifuge centerpiece. As for the details of 
construction and manipulation of such a cell, reference should be made to their 
original article (33). One of the characteristic features of this new method would 
be that optical measurements 1Thich are almost exclusively involved in the classi- 
cal sedimentation velocity experiments are no longer necessary for obtaining the 
experimental data required in this case. Assays of Q(t )  are the only measure- 
ments required on the solutions obtained from the ultracentrifuge. Such assays 
may be performed by chemical, physical, or biological methods in accordance 
with the relevant character of the solutes concerned. 

VI. APPROXIMATE TREATMENTS OF THE LMM EQUATIOS 
The method of Tphantis and Waugh (32) requires constructions of Q vs. 

plots for a number of u values under given cell parameters (TI, rz, and rr) .  The 
Q vs. T graph prepared by them (figure 8 ) ,  as noted before, refers to a specific 
separation cell having rl = 6.067 cm., TZ = 7.003 cm., and r t  = 6.600 cm. It is 
tedious to construct cells with exactly these cell parameters; moreover, Q vs. r 
curves for u values other than those chosen are required in general. These prob- 
lems could be solved without difficulty if Archibald’s exact solution to the Lamm 
equation were tractable for numerical computations of solute distributions in a 
given cell for any paired values of T and u (or E) .  As noted previously, however, 
this is not actually the case, particularly for small enough values of T and e for 
which the infinite series in equation 38 converges so slowly that the solution is 
practically of no value for the purpose concerned. For these reasons, suitable 
approximate solutions which readily yield solute distributions with sufficient 
accuracy have been investigated on the basis of a practically identical idea. 
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Archibald (3) has developed approsimations to the solute distribution in the 
cell where 22 - z1 1. Waugh and Yphantis (28) showed that Archibald’s 
approximations are applicable even for larger differences of 22 and 21 ranging 
from 3 to 9. Considerable computation, however, is required in obtaining the 
results demanded even with this simplified solution, 

A better and simpler approximate solution to the Lamm equation has recently 
been worked out by Yphantis and Waugh (32) and independently by Fujita (12). 
The calculation of solute distributions in the sector-shaped cell is complicated 
because of a radially varying centrifugal field. In  the ultracentrifuge cells cur- 
rently used, the opening of their radial edges is as small as 4” and, in addition, 
the distance betxeen their meniscus and bottom is sufficiently small compared 
with that  between the meniscus and the axis of the rotor, i.e., ( ~ 2  - TI)/TI  << 1. 
These cell conditions allow one to  assume that the physical situation in the actual 
sector-shaped cell be, to a first approximation, the same as that in a rectangular 
cell with a uniform field of force. Solutions for such a rectangular system mere 
worked out by Mason and Weaver ( 2 2 )  more than thirty years ago in connection 
with their treatment of the settling of spherical particles under gravity. Yphantis 
and Waugh, and independently Fujita, have modified slightly such classical 
solutions of Mason and Weaver by taking into account a first-order effect of the 
sectoral, radially varying field and obtained practically identical approximate 
solutions to the Lamm equation. I-phantis and Waugh’s solution reads 

m 

where E,(.T) is given by 

16cr2n exp[ - (am2n2 + - m[l - (-l)me1’2m] 
(49) 

4a ’> 1 
(1 + 4a2m2r2)2 Em(T)  = 

In  equation 48 the symbol> y, a ,  and y are, respectively, defined by 

y = (T - T l ) / ( T 2  - Tl )  

a! = 1/a?(r2 - T ~ )  = D/u2s7(r2 - r I )  

y = F / 2 ( T 2  - r1) 

(50) 

( 5 1 ) 9  

( 5 2 )  

and 

The quantity f is left undetermined in their treatment, but in practice it may be 
chosen as the radius to a point taken somewhere in the central region of the cell, 

9 a can be expressed in terms of 

e = 2D/sw2r: 

as 

o1 2 7 =‘(‘)(’) rl - rl 



ivithout serious lo+ of accuracy of the result.. I) In  general, if the ratio of r2 - rl 

t o  7 is made imaller. heiice y is made larger the phykical situation is closer t o  
the rectangular eysten a i d  therefore the :Lpprouiiiation should become more 
accurate. I n  Fujita’, solution, ~i hich is iligiitly different from the above in its 
details, the quaiitity equivalent to  7 is exprehsed in ternis of other related 
physical p:iraiiieterh, and thus the find solutio:) is uniquely deteiniined. 

The solution thus obtained, equation 48, iq much simpler thai: Ah-chibald’s 
exact solution involving a series of confluent hypergeometric fuiictions or ewii 
than his 0u-n approximation. In  fact. 111th this solution one can calculate solute 
distributions in a given cell in a quite straightfonvard maiiner up to the nuiner- 
ical accuracy as desired. Furthermore, the espres4oii for a distribution may be 
readily integrated to yield an aiialytic form of the nverage fractional super- 
natant coiicentratioii Q ( t )  as 

From this one may compute easily Q Y+. T plot\ for various values of r as required 
in the application of the method of l-phantii aiid Vaugh deqcribed previously. 
The degree of approximation of equation 48 to the exact solution i+ satisfactory 
so far as iiumerically investigated; a typical esample of the comparison is shown 
in figure 9, where the solid line has been obtained from zolutions by a differential 
analyzer. One may also readily obtain an aiialytic expression for the cmicentr:i- 
tiori gradient distribution by simply differentiating equation 48 with respect 1 o 
r ,  and the resulting equation is again tractable for straightforward nuniericd 
computations. Thus the concentration gradient curves .’non-n in figurc 5 have 
been computed froni such an approvimLite solution, though actually the equation 
derived by Fujita i m s  used instead of that of J-phantis and Waugh cited above. 

On examination, it is found that all the approximate solutions described still 
involve a similar inherent disadvantage as doe.. the original evact solution of 
Xrchibald, in that  all the infinite seriez inr.olved in them converge slon.ly for 
small values of T and 6 ;  heiire they are of no pr:ictical use for obtaining theoretied 
information about the qedinientation of large molecules a t  early Ltages of u1tr:i- 
centrifugation. For sufficiently <mall value> of T and E one may turn back to  the 
classical solution due to F a s h  or its variant,.. Honever, there muqt be an inter- 
mediate region in Ti-hich both T and 6 are neither co m i ~ l l  as t o  warrant Fauh’h 
approsimatioiis nor so large a \  to make rapid con\ crgeixe of the series in  Archi- 
bald’s solution or its variant%. The niathematic,il theory of \edimeiitation be- 
havior useful for such an intermediate legion i\ rertanily desiiecl,ll because there 
i> now much i1itere.t in the deteimiiiation+ of mo!ecdzL e hy the ultracentii- 
fugation of 5uh.taiice~ which have intennediate niol ar n-eights availa1,le 
neither by the peak movement nor hy the i ~ a -  traii.;port anal 

In their numerical computation Tphantis wid TTaugh (32) chose i = r t  = 6 600 cm 
l1 The so!ution considered by 1lacCosham and Fujita (21) is applicable for an) c ,  p r o -  

vided T is sufficiently small. It is therefore somen hat significant in ielation t o  this pron- 
1em 
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FIG. 9. Comparison of the exact solution and Tphantis and Waugh's approximate solu- 

tion t o  the Lamm equation. The ordinate gives the ratio of concentration at  a time 4 hr. 
from the start  of centrifugation to  the initial concentration. The abscissa gives the radial 
position in centimeters. The following values are used for the calculation: s = 0.356 X 

sec., D = 2.989 X lo-' cm.2/sec., T I  = 6.067 em., rl = 6.600 cm., rP = 7.003 cm. 

I n  solutions of the Archibald type considered in this and the previous par- 
agraphs, the dependence of s or D or both on concentration is ignored. This is 
partly justified, because, as noted before, those solutions are primarily suited to  
solutes of low molecular weight. For such solutes the dependence of s or D on 
concentration id usually much less pronounced than that  for solutes of high 
molecular weight. 

Either the exact or the approximate solution of the -Irehibald type discussed 
above is valid only for bedimentation in the standard cell, because both assume a 
uniform initial solute distribution, i.e., equation 2 .  For the analysis of sedimenta- 
tion velocity data from synthetic boundary-forming cells in which a sharp initial 
boundary is formed between solution and bolvent (or solutions of different con- 
centrations) in the central part of the cell, solution of the Lamm equation must 
be obtained with the initial condition of the form of equation 3 .  Such sb solution 
should reduce to Fash ' s ,  as discussed in Section 111, for sufficiently small values 
of T and E ,  but for the purpose of obtaining a theoretical basis for the sedimenta- 
tion analysis of lon.-niolecular-weight solutes from bynthetic boundary-cell data, 
its behavior for more general values of these parameters need be explored mathe- 
matically and in detail. S o  attempt to  the solution of this problem has a5 yet 
been reported, however. 

Since in synthetic boundary-forming cells the disturbing effect arising from 
restricted diffusion in the vicinity of the meniscus is practically absent, distinct, 
bell-shaped sedimentation boundaries could be obtained n-ith much smaller and 
more highly diffusible molecules than those which may be studied in the standard 
cell by conr-entional penk-displacement nmisurenients. This situation implies a 
remarkable advantage of the synthetic boundary-forming cell over the conven- 
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tional standard cell in the sense that the peak-movement method is the most 
reliable and accurate nom available for the determination of the sedimentation 
coefficient. However, it should be noted that in experiments with a sharp initial 
boundary formed away from the cell meniscus the region of uniform concentration 
ahead of the boundary is disturbed earlier than in experiments with a uniform 
initial concentration distribution, by diffusion resulting from the concentration 
gradient near the cell bottom. This apparently limits the applicability of the 
synthetic boundary-forming cell to molecules of not too small size. In  order to  
emphasize the availability of this new type of cell, particularly for the sedimenta- 
tion analysis of low-molecular-weight solutes, definite theoretical information 
should be obtained from the Lanim equation concerning the effect of diffusion on 
sedimentation patterns to  be observed in a cell of this type. 

The synthetic boundary-forming cell provides another interesting technique 
that cannot be obtained with a standard cell That is, it makes i t  possible t o  
determine a differential sedimentation velocity between two concentratlions of 
the same molecule. Schachman and Harrington (1 8c) have shown experimentally 
that  for s decreasing with increasing concentration the differential sedimentation 
boundary has a much lower s than either of the s values corresponding to  the 
concentrations of the given two solutions. Hersh and Schachman (17) have shown 
that this behavior of a differential boundary can be accounted for by simple niass 
considerations. 

TII, I’RESSCRE-DEPEXDEKT SEDIMESTATIOK 
At speedb of rotation usually employed in measurements of sedimentation 

velocity, a large pressure difference, which may amount to Peveral hundred 
atmospheres, is produced between the liquid-air nieiiiscus and the bottom of the 
cell. Since the viscosity and density of the solvent and the specific volume of the 
solute niay vary with pressure, it is expected that sedimentation processes in such 
a field of high-pressure gradient should differ more or less from those in a field of 
uniform pressure. In  order t o  attain a high precision in the evaluation of the 
intrinsic sedimentation coefficient of a given substance, a correction must he 
applied to sedimentation data n-ith respect to  this pressure effect, along with, 
aiiiorig other things, the elimination of the conceiitration dependence effect by 
means of extrapolation to  infinite dilution. 

Thi. problem n-as early considered by llosiniann and Signer (23) and was 
recently worked out more specifically by 0 t h  and Desreux (24) and Cheiig and 
Schachman (8). Singer ( 2 5 )  has diqcusqed the effect of preswre upon the con- 
figuration and the orientation of flexible inacromolecules hedinienting in a 
field of high pressure gradient. He shoned that the pre,sure effect upon the 
frictional coefficient of such a macromolecule is practically negligible !Tithin the 
range of pressure obtained in ordinary ultracentrifuge cells. This implies that  
values of the diffusion coefficient D obtained from free diffusion experiments mag 
be combined with s from ultracentrifugal nmsureiiients to calculate the molec- 
ular neight JI by  means of the Svedberg relation. On the b 
equation n-ithout the diffusion term, i.e., equation 5 ,  Fujita (10) has made a 
mathematical refinement of the problem as dealt with by 0 t h  and Desreux who 



used a rather enipirical procedure and, moreover, derived solutions of equation 3 
n-ith s which not only depends upon pressure but also varies it-ith concentratioii 
in the fashion represented by equation 31. It ~ r - 2  holm that the squxe  dilution 
law no longer holds in cases ~t-liere s pressure, while it does for s 
dependent on concentration alone irrespective of thc form of its dependence. 
The effect of hydrostatic pressure on s should become significant for solutes in 
organic solvents Tvhich usually have m w h  larger compressibilities than \vater. 
Experimental inforimtion about the dependence of the viscosity of solvent,$ (xi 
pressure is particularly needed for further development of the theory of pressure- 
dependent sedimentation processes. BotEl theoretical and experimental investign- 
tions in this field are apparently in a very premature stage, and need for further 
work is quite apparent. 
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